---- CENTER FOR DRUG EVALUATION AND RESEARCH **APPLICATION NUMBER: 20-830** PHARMACOLOGY REVIEW(S) # DIVISION OF PULMONARY DRUG PRODUCTS REVIEW OF PHARMACOLOGY AND TOXICOLOGY DATA (Addendum_to Original Pharmacology Review dated 12/1/97) NDA No. 20-829 and 20,830 Information to be Conveyed to Sponsor: Yes (), No (X) Reviewer: Shannon P. Williams, Ph.D. Date Addendum Completed: January 28, 1998 Sponsor: Merck & Co., Inc., West Point, PA Drug Names: Generic: montelukast sodium; Commercial: Singulair™; Code: MK-0476, MK-476 and L-706,631 Background: The labeling review contained in the Original Pharmacology reviews for NDAs 20829 and 20830 (Reviews by Shannon Wiliams, Ph.D., dated 12/1/97) contained an error in the section pertaining to montelukast's effect on fertility in male rats. In this regard, the 800 mg/kg dose, which had no effects on fertility in male rats, was incorrectly stated to be 80 times the maximum recommended daily oral dose in adults on a mg/m² basis. The 800 mg/kg dose is actually 650 times the maximum recommended daily oral dose in adults on a mg/m². This correction has been incorporated in to labeling recommendations for the package insert. - Shannon Williams, Ph.D., Pharmacologist c.c. Original NDA 20-829 and 20-830 HFD-570/Division File for NDA 20-829 and 20-830 HFD-570/C.J. Sun HFD-570/C.S.O. HFD-570/Shannon Williams 15/ # DIVISION OF PULMONARY DRUG PRODUCTS REVIEW OF PHARMACOLOGY AND TOXICOLOGY DATA Original Review NDA No. 20-829 and 20,830 Submission date: 21 FEB 97 Information to be Conveyed to Sponsor: Yes (X), No() Reviewer: Shannon P. Williams, Ph.D. Date Review Completed: 01 DEC 97 Sponsor: Merck & Merck & Co., Inc., West Point, PA Drug Names: Generic: montelukast sodium; Commercial: Singulair 114, Code: MK-0476, MK-476 and L-706,631 Chemical Name: [R-(E)]-1-[[[1-[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-3-[2-(1-hydroxy-1-methylethyl)phenyl]propyl]thio]methyl]cyclopropane acetic acid, monosodium salt. ### Structure: Empirical Formula: $C_{35}H_{35}ClNNaO_3S$ (M.W. = 608.18) Drug Product Formulation: 10 mg Tablet | Ingredient | Core Tablet (mg) | Film Coating (mg) | |---|------------------|-------------------| | Montelukast sodium (free acid equivalent) | 10.4 (10.0) | | | Hydroxypropyl cellulose | () | | | Microcrystalline cellulose | | | | Lactose monohydrate | | | | Croscarmellose sodium | | | | Magnesium stearate | | | | Hydroxypropyl methylcellulose | | | | Titanium Dioxide | | | | Red Iron Oxide | | , | | Yellow Iron Oxide | | • | | Carnauba Wax Powder | | | | Total Tablet Weight (mg) | | · | | Drug Product Formulation: | 5 mg | ChewableTablet | |---------------------------|------|----------------| |---------------------------|------|----------------| | Ingredient | mg/Tablet | | |---|-----------|------------| | Montelukast sodium (free acid equivalent) | 5.2 (5.0) | - <u>-</u> | | Mannitol, USP | | | | Microcrystalline cellulose, NF | | | | Croscarmellose sodium, NF | | | | Hydroxypropyl cellulose, NF(EXF) | | | | Artificial Cherry Falvor, NF | | | | Magnesium stearate, NF | | | | Aspartame, NF | | • | | Red Ferric Oxide, NF | | | | Total Tablet Weight | | | Excipients, Degradants and Impurities: The proposed levels of all excipients, in both the adult tablet and the children's chewable tablet, occur at levels well within the ranges of those used in other currently approved drug products. Thus, there are no nonclinical issues with the proposed excipients in either the adult or pediatric formulation. Class: cysteinyl leukotriene CysLT₁ receptor antagonist Indication: prophylaxis and chronic treatment of asthma in adult and pediatric patients 6 years of age and older. Route: Oral Pediatric Dose 5 mg (tablet) once daily, In a 25 kg child this is 0.25 mg/kg, 6.2 mg/m². Adult Dose: 10 mg (tablet) once daily in adults, In a 50 kg adult this is 0.2 mg/kg, 7.4 mg/m². ## Related INDs/NDAs/DMFs: Previous Review(s), Date(s) and Reviewer(s): This NDA has not been reviewed previously. Relevant reviews of related INDs are listed below: APPEARS THIS WAY ON ORIGINAL # Preclinical Studies Submitted and Reviewed in this NDA: Note: Unless otherwise specified, studies were submitted to IND | ACUTE TOXICITY STUDIES | [Ref. No.] | Vol./pp. | |--|------------|--------------------| | Acute Oral Toxicity Study In Mice | TT#92-2820 | 1.30/H-61 | | PHARMACOKINETIC STUDIES | | | | Absorption and Disposition of MK-0476 in Mice, Rats & Monkeys* | [G-2] | 29/G88 | | [14C]MK-0476: Distribution in Blood and Octanol/Buffer Partition* | [G-4] | 29/G199 | | Gastrointestinal Absorption Sites of [14C]MK-0476 in Male Rats** | [G-5] | 29/G206 | | Plasma Levels of MK-0476 After 14-Day Repeated Oral Administration of MK-0476 in Male Rats** | [G-6] | 29/G216 | | Plasma Protein Binding of [14C]-MK-0476* | [G-7] | 29/G216 | | Tissue Distribution of Radioactivity in Rats After Oral
Administration of [14C]MK-0476* | [G-8] | 29/G216
29/G239 | | Whole Body Autoradiography in Rats** | [G-9] | 29/G247 | | Comparison of Metabolic Profiles of MK-0476 in Human | [G-12] | 29/G247
29/G387 | | Monkey, Rat and Mouse* | | | | Hepatic Microsomal Metabolism of MK-0476 in Mouse, Rat, Monkey and Human* | [G-15] | 29/G456 | | LOCAL TOLERANCE | | | | Dermal Irritation Study in Rabbits TT #94-2649 | | 30/H-20 | | | | 30/H-30 | | Ocular Irritation Study in Rabbits TT #94-4269 | | | | Dermal Irritation Study In Rabbits TT #92-2819 | | 30/H-35 | | , | | 30/H-72 | | Ocular Irritation Study In Rabbits TT #92-4269 | | 30/H-98 | | SPECIAL TOXICITY | | 30/H-126 | | Oral/Subcutaneous Immunogenicity Study in Guinea pigs TT | | 31/Q-87 | APPEARS THIS WAY ON ORIGINAL # Previously Reviewed Preclinical Studies Submitted in this NDA: | STUDY TYPE/REFERENCE NO. | Vol./pp. | Reviewer | Date of Rev. | |--|--------------------|-------------|--------------| | PHARMACOLOGY STUDIES / F1- F26 | 28/F22-F373 | | | | ANCILLARY PHARMACOLOGY | | | | | Behavior and other effects in BKTO mice [F-25] | 28/F-25 | Choi | 13 JUL 92 | | Cardiovascular and autonomic effects in anesthetized | | Choi | 13 302 92 | | dogs [F-25] | 28/F-25 | Choi | 13 JUL 92 | | Renal effects in conscious dogs [F-25] | 28/F-25 | Choi | 13 JUL 92 | | Respiratory effects in conscious dogs [F25 and F-26] | 28/F-25 | Choi | 13 JUL 92 | | Gastric acid secretion in chronic gastric fistula dogs: | 28/F26 | Williams | 02 JUN 97 | | [F-25] | | | 02001177 | | | 28/F26 | Choi | 13 JUL 92 | | PHARMACOKINETIC STUDIES | | | | | Physiological Disposition in Rats and Monkeys/[G-1] | 29/G-39 | Choi | 13 JUL 92 | | SINGLE DOSE TOXICITY | | | | | PO Tox. Study in Mice TT #91-2787 | 7/A-17 | - 61 : | | | IV Tox. Study in Mice TT #91-2788 | 7/A-17
7/ A-17 | Choi | 13 JUL 92 | | PO Tox. Study in Rats TT #91-2789 | 7/ A-17
7/ A-17 | Choi | 13 JUL 92 | | IV Tox. Study in Rats TT #91-2790 | 7/ A-17
7/ A-17 | Choi - | 13 JUL 92 | | PO TK Study in Mice. TT #92-113-0 | 7/ A-17
7/ A-33 | Choi | 13 JUL 92 | | PO TK Study in Rats. TT #92-031-0 | 7/ A-98 | Williams | 02 JUN 97 | | MULTIPLE DOSE TOXICITY | // A-76 | Williams | 02 JUN 97 | | | | | | | 5-Wk PO Tox. Study In Monkeys TT #91-121-0 | 8/B-90 | Choi | 13 JUL 92 | | 14-Wk PO Tox. Study In Monkeys TT #92-611-0 | 9/B-402 | Williams | 24 OCT 96 | | 53-Wk PO Tox. Study In Monkeys TT #92-650-0 | 9-10/B-701 | Williams | 24 OCT 96 | | 14-Wk PO Tox. In Infant Monkeys TT #94-9003
5- Wk PO Tox. Study In Rats TT #91-120-0 | 11/B-1232 | Williams | 24 OCT 96 | | Range-Find (8-Day PO) Tour in Data TT #90 con a | 11-12/B-1362 | Choi | 13 JUL 92 | | Range-Find (8-Day PO)Tox. in Rats TT #92-609-0
14- Wk PO Tox Study In Rats TT #92-610-0 | 12/B-1799 | Williams | 02 JUN 97 | | 14-Wk PO Tox /TV Spots In Base 777 1100 000 0 | 12-13/B-1820 | Williams | 24 OCT 96 | | 14-Wk PO Tox./TK Study In Rats TT #92-098-0 | 15-16/B-3107 | Williams | 24 OCT 96 | | 53-Wk PO Tox/TK Study In Rats TT #92-651-0 | 13-15/B-2375 | Williams | 24 OCT 96 | | 6-Day PO TK Study In Rats TT #93-054-0 | 16/B-3585 | Williams | 02 JUN 97 | | Range-Find (8-Day PO)Tox. in Mice TT #92-070-0 | 16/B-3703 | Williams | 02 JUN 97 | | 4-Wk PO Tox. Study in Mice TT #93-001-0 | 17/B-3738 | Williams | 02 JUN 97 | | 6-Wk PO TK Study in Mice TT #93-034-0 | 17/B-3907 | Williams | 02 JUN 97 | | 6-Day IV Tox. Study In Rats TT #93-144-0 | 17/B-4013 | Choi* | 27 JUL 95 | | 6-day IV Tox Study In Monkeys TT #93-145-0 | 17/B-4145 | Choi* | 27 JUL 95 | | 7 day IV Irritation Study In Monkeys TT #94-629-0
Choi* Studies reviewed under | 17/B-4371 | Choi* | 27 JUL 95 | | Previously Reviewed Preclinical Studies Submitte | d in this NDA. | (CONT.) | |--|----------------|----------| | REPRODUCTIVE TOXICITY | Vol /nn | Periemen | | REPRODUCTIVE TOXICITY | Vol./pp. | Reviewer | Date of Rev |
--|-----------------|--------------|-------------| | PO Rng-find in (non-pregnant) Rabbits TT #92-71 | | | | | PO Range-find in (pregnant) Rabbits TT #92-716- | = | Williams | 02 JUN 97 | | PO Develop. Tox. Study in Rabbits TT #92-716-0 | _ = = | Williams | 02 JUN 97 | | MK-0476: PO TK in Pregnant Rabbits. TT#93-738 | | Williams | 02 JUN 97 | | MK-0476: PO TK Study in Pregnant Rats w/ | 8-0 19/C-228 | Williams | 02 JUN 97 | | Secretion in Milk. TT#93-740-0 | 22/0 1224 | Williams | 02 JUN 97 | | PO Range-find Study in Rats TT #92-717-1 | 22/C-1282 | Williams | 02 JUN 97 | | PO Develop. Tox. Study in Rats TT #92-717-0 | 19/C-280 | Williams | 02 JUN 97 | | PO Fertility In Female Rats TT #92-723-0 | 20/C-403 | Williams | 02 JUN 97 | | PO Fertility In Male Rats TT #93-706-0 | 20-21/C-500 | Williams | 02 JUN 97 | | PO Late Gestation & Lactation in Rats TT #93-728 | 21/C-990 | Williams | 02 JUN 97 | | GENETIC /MUTAGENIC TOXICITY | -0 21-22/C-1136 | Williams | 02 JUN 97 | | THE TOTAL TO | | | | | | 23/D-31 | Williams | 24 OCT 96 | | | 23/D-31 | Williams | 24 OCT 96 | | V7034 | 22/10 05 | Williams | 24 OCT 96 | | V79 M. cell Range-Find Cytotox. study TT #93-855 | 50 23/D-141 | Williams | 24 OCT 96 | | <u>-</u> | 23/D-141 | Williams | 24 OCT 96 | | Death, and a management | 22/0 104 | Williams | 24 OCT 96 | | Rat Hepatocyte Rng-Find Cytotoxicity TT #91-837 | 5 23/D-240 | Williams | 24 OCT 96 | | · | 23/D-240 | Williams | 24 OCT 96 | | TIOD BY 10 | 22/0.200 | Williams | 24 OCT 96 | | CHO Rng-Find Cytotox. and Solubility TT #91-888 | 1 22/0 240 | Williams | 24 OCT 96 | | n Vitro Chrom. Aberrat. in CHO Cells TT #91-888 | 2 23/D-349 | Williams | 24 OCT 96 | | n Vitro Chrom. Aberrat. in CHO Cells TT #94-8638 | R 24/D 420 | Williams | 02 JUN 97 | | Mouse Bone Marrow Chrom. Aberrat. TT #93-8681 | 24/73 407 | Williams | 24 OCT 96 | | Mouse Bone Marrow Chrom. Aberrat. TT #93-8696 | 23/D-487 | Williams | 24 OCT 96 | | PNCOGENIC/CARCINOGENIC POTENTIAL | | | 24 001 96 | | 06-Week PO Carc. Study In Rats TT #93-078-0 | 25.26/5.40 | | | | 2-Week PO Carc. Study In Mice TT #93-110-0,-1 | 25-26/ E-19 | Williams | 24 OCT 96 | | PECIAL TOXICITY | 26-27/E-557 | Williams | 24 OCT 96 | | | | | | | ral Phototoxicity Study in Mice TT #91-2722 | 31/Q-20 | Choi | 13 JUL 97 | | D Enzyme Induction Study in Mice [H-50] TT #91-
51-0,-4 | • | <u></u> | 10 10L 91 | | 71 - U, -4 | 31/Q-28 | Choi | 13 JUL 97 | | ral Enzyme Induction Study In Rats TT #91-074-0 | 31/Q-42 | Choi | 13 JUL 97 | | _ | - | -1101 | 13 JOT A1 | | | 31/Q-60 | Choi* | 27 11 11 00 | | · · | - | CHOL | 27 JUL 95 | | 10 | 31/Q-60 | Choi* | 27 11 11 25 | | al Drug Interaction Study In Mice TT #92-2651 | 31/Q-67 | | 27 JUL 95 | | Choi* Studies reviewed under | | Choi | 13 JUL 92 | Note: Portions of this review were excerpted directly from the sponsor's submission. ### **PHARMACOLOGY** Table 1 (below and succeeding page) presents a tabulated summary of the studies which investigated the pharmacodynamic activity of montelukast. # Table 1 Biological Activities of Montelukast | NDA | 20.829 | and | 20,830 | |------|--------|-----|--------| | Page | 7 | | | Table 1 cont... # Summary of Pharmacodynamic Activity: Submitted studies on the pharmacodynamic activity of montelukast included receptor binding studies, effects on contraction of isolated tissues, effects on agonist-induced bronchoconstriction, effects on antigen-induced bronchoconstriction and other miscellaneous pharmacological studies. Receptor binding studies using guinea-pig lung, sheep lung, and human differentiated U937 cell membranes, and studies on isolated guinea-pig trachea showed that monteluksast is a potent and selective competitive antagonist of the Cys LT1 receptor. Potency and selectivity at the Cys LT1 receptor was also demonstrated in *in vivo* studies wherein montelukast, administered by i.v., aerosol or oral route inhibited leukotriene 1996年 - D4-induced bronchoconstriction in guinea pigs, squirrel monkeys, and to a lesser extent in conscious sheep following aerosol administration. Montelukast was devoid of such inhibitory activity against a variety of other bronchoconstrictors including: histamine. arachidonic acid, serotonin, and acetylcholine in anesthetized guinea pigs. A role for the Cys LT1 receptor in antigen or ascaris-induced bronchoconstriction was demonstrated in in vivo models including: antigen-induced dyspnea in inbred rats, ascarisinduced bronchoconstriction in conscious squirrel monkeys and ascaris-induced early and late phase bronchoconstriction in conscious sheep, wherein montelukast was shown to be a potent and selective antagonist of the induced bronchoconstriction. Thus, collectively the available pharmacodynamic studies suggest that Montelukast may have therapeutic value in treating human diseases such as bronchial asthma. ### SAFETY PHARMACOLOGY Previously submitted ancillary pharmacological studies included effects of montelukast on cardiovascular, renal, gastric, respiratory or CNS and behavioral parameters, where no significant activities were noted at the doses tested. The said studies have been reviewed previously (See attached Pharmacology Reviews by Dr. Choi dated 7/13/92 and by Dr. Williams dated 02 JUN 97) are more fully discussed in the Overall Summary and Evaluation Section of the Document. # PHARMACOKINETICS AND TOXICOKINETICS Methods: The absorption, distribution, metabolism and excretion (ADME) of montelukast were studied in mice, rats, and rhesus monkeys following oral and iv dosing with Radiolabeled [14 C]-montelukast ([14 C]MK-0476, Batch # L-706,631-003S009), and Unlabeled MK-0476 Batch # L-706,631-001M035). The concentration of montelukast in plasma was measured Radioactivity in tissues, urine, bile and feces was determined The limit of detection was $0.031~\mu g/ml$. Initially conducted pharmacokinetic studies in rats and monkeys (Ref. [G-1]) were previously reviewed (See Pharmacology Review of by Dr. Choi dated 7/13/92). Although some variability between the two studies was observed, in general reported results were similar between the two studies. Thus, this review will focus on the more recent study submitted, unless indicated. Unless stated otherwise, male animals were used in the ADME studies. The animals were fasted overnight prior to oral absorption studies. ### Results: Absorption: #### Oral: Table 2 below presents a tabulated summary of the pharmacokinetics of montelukast following oral administration in rats, mice, monkeys and humans. Table 2 Pharmacokinetics of Montelukast in Laboratory Animals and Humans After Oral Administration (Mean ± S.D.) (Sponsor's Summary Table G-2, NDA 20-829 Vol. 29 pp G-9) | Species | Dose (mg/kg) | AUC _{0.} (µg•min/ml) | Cmax
(µg/ml) | Tmax
(min) | F | t1/2° | |------------------------------------|----------------------|---|--|--|--|----------------------------------| | Rat
(n=3-4) | 5
25
50
200 | 100 ± 58.7 580 ± 235 1106 ± 325 4795 ± 3628 | $ \begin{array}{c} (1.27 \pm 1.36 \\ 2.82 \pm 1.61 \\ 4.35 \pm 1.68 \\ 15.7 \pm 16.5 \end{array} $ | $22.5 \pm 8.66 \\ 37.5 \pm 8.66 \\ 67.5 \pm 26.0$ | $(\%)$ 29.6 ± 17.3 34.2 ± 13.8 32.6 ± 9.57 | (min)
80.2 ±12.8
176 ±122° | | Mouse * | 5
25
50
200 | 180
705
2411
9004 | 0.940
3.72
14.4
34.2 | 80.0 ± 34.6
30
60
60
120 | $ 35.3 \pm 26.7 \\ 45.6 \\ 35.7 \\ 61.0 \\ 57.0 $ | | | Monkey
(n=4) | 5
25
50
150 | 736 ± 191
5360 ± 2557
7795 ± 2751
35456 ±
12405 | 4.54 ± 2.08
21.6 ± 4.32
27.3 ± 11.6
60.4 ± 15.9 | $78.8
\pm 48.0$ 67.5 ± 35.7 101 ± 37.5 90.0 ± 60.0 | 57.0 36.2 ± 9.42 52.8 ± 25.2 38.4 ± 13.6 58.2 ± 20.4 | 152 ± 29.4°
457 ± 55.9° | | Iuman ^b (n=6) Mean plas | 0.126 | 146 ± 26.5 | 0.385 ± 0.085 | 220 ± 49.0 | 67.3 ± 12.9 | | ^a Mean plasma concentrations from three animals at each sampling time were used in the estimation of pharmacokinetic parameters. The Data in Table 2 above show that Montelukast was rapidly absorbed in rats and mice with increased Tmax indicative prolonged absorption seen with dose increases from 5 to 200 mg/kg in both species. Absorption was somewhat slower in monkeys and humans and in monkeys the rate of absorption appeared independent of the dose. Bioavailability (F%) although somewhat variable appeared to be independent of dose at the doses tested being around 30-35% in rats, 36-60 % in mice and monkeys, with greatest bioavailability (67%) observed in humans. In rats and mice increases in doses produced roughly proportional increases in Cmax and AUC values over the doses of 5 to 200 mg/kg. In monkeys increasing doses produced roughly proportional increases in AUC values, with less than proportional increases in Cmax values over a dose range of 5 to 150 mg/kg. Comparisons between species showed that similar doses resulted in greatest exposure (Cmax and AUC) in ^bClinical dose 10 mg (mean body weight = 79.3 kg) ^{[14}C]MK-0476, Batch # L-706,631-003S009; Unlabeled MK-0476 # L-706,631-001M035 [[]Ref. G-1] Reviewed by Y.S. Choi in pharmacology review dated 7-13-92 monkeys, relative to rats and mice, where exposure was comparable. Elimination half-life values following oral dosing were not provided in the study from which the nonclinical data in Table 2 was derived [Ref G-2]. However, previously conducted pharmacokinetic studies in rats and monkeys (Reviewed by Y.S. Choi in pharmacology review dated 7-13-92) reported elimination half-life values of 80.2 ± 12.8 and 176 ± 122 min in rats and 152 ± 29.4 and 457 ± 55.9 min in monkeys following oral administration of montelukast at doses of 5 and 25 mg/kg, respectively [Ref. G-1]. Additional repeat dose pharmacokinetic testing in rats [Ref. G-6] showed similar pharmacokinetic parameters: Cmax [0.563 to 0.875 μ g/ml], Tmax [40-55min], AUC [80-117 μ g·min/ml], and t1/2 [87-105 min] on days 1, 8, and 14 of dosing, indicating that repeated oral administration of MK-0476 (5 mg/kg) for 2 weeks had no significant effects on its pharmacokinetic handling in rats [Ref. G-6]. Other studies conducted in rats investigated the mechanism behind the low bioavailability (33%) in rats in relation to potential intestinal metabolism and/or first pass metabolism. In vitro studies using an isolated rat intestinal loop preparation showed that introduction of a 1 mg (3-4 mg/kg) dose of [14C]-montelukast directly into the jejunum underwent negligible intestinal metabolism [Ref. G-2]. In contrast, studies which compared the steady-state drug concentrations in systemic plasma during portal or femoral vein infusion (4 mg/min estimated the first pass metabolism to be 27% [Ref. G-2]. Thus, considering the hepatic first-pass extraction, the extent of absorption for montelukast in rats was estimated to be 50%, in rats, suggesting the low bioavailability was due to the combination of incomplete absorption and hepatic first-pass elimination. Additional studies in rats investigated the gastrointestinal (GI) absorption site(s) of montelukast [Ref. G-5] and possibility of enterohepatic circulation [Ref. G-1]. In studies on the site of absorption, injection of [14C]montelukast (5 mg/kg) into the pre-ligated duodenum, jejunum, or ileum of rats resulted in substantial plasma concentrations (0.3-0.4 mg/ml) at 15 min after dosing, whereas no plasma concentrations were observed after direct dosing in the ligated stomach. Other studies which investigated the possibility of interohepatic circulation showed that iv. administration of montelukast (5 mg/kg) into intact and bile duct-cannulated rats resulted in comparable plasma AUC values for montelukast in both models, suggesting that enterohepatic circulation of montelukast was negligible in rats [Ref. G-1]. #### I.V. Table 3 (succeeding page) presents a tabulated summary of the Pharmacokinetics of montelukast in rats mice monkeys and humans following iv administration. Table 3 Pharmacokinetics of Montelukast in Laboratory Animals and Humans After I.V. Administration (Mean ± S.D.) (Sponsor's Summary Table G-1 NDA 20-829 Vol. 29. pp. G-7) | Species | Dose
(mg/kg) | AUC ₀₋
(µ-min/ml) | CLp
(ml/min/kg) | T½
(min) | Vd _{ss}
(L/kg) | |----------------------|-----------------|---------------------------------|---------------------------|-----------------|--| | Rat | 2 | 136 ± 21.9 | 15.0 ± 2.27 | 68.9 ± 25.1 | 0.467 0.14 | | (n=4) | 5 | 290 ± 44.9 | 17.6 ± 3.04 | 98.0 ± 45.9 | 0.467 ± 0.14 0.923 ± 0.48 | | | 10 | 830 ± 136 | 12.3 ± 1.91 | 97.4 ± 36.8 | 0.523 ± 0.48 0.681 ± 0.34 | | Mouse * | 2 | 158 | 12.7 | 63.6 | 0.906 | | | 5 | 482 | 10.4 | 81.6 | 0.812 | | 14 | 10 | 949 | 10.5 | 81.7 | 0.840 | | Monkey - | 2 | 812 ± 163 | 2.54 ± 0.481 | -135 ± 20.5 | 0.199 ± 0.055 | | (n=4) | -5 | 2508 ± 653 — | $\frac{2.09 \pm 0.487}{}$ | 123 ± 38.5 | $\frac{0.16}{2} \pm 0.057$ | | T.T., b | 10 | 3634 ± 453 | 2.79 ± 0.383 | 123 ± 46.5 | 0.185 ± 0.050 | | Human b | 0.038 | 61.9 ± 11.9 | 0.636 ± 0.127 | 276 ± 66.6 | 0.143 ± 0.018 | | (- C) | 0.114 | 197 ± 17.0 | 0.585 ± 0.075 | 327 ± 10.6 | 0.132 ± 0.013 | | (n=6)
Mean plasma | 0.227 | 458 ± 83.6 | 0.513 ± 0.094 | 322 ± 11.8 | 0.132 ± 0.013
0.122 ± 0.011 | ^a Mean plasma concentrations from three animals at each sampling time were used in the estimation of pharmacokinetic parameters. Following i.v. administration, the plasma concentrations of montelukast declined in a polyphasic manner in mice, rats and monkeys. The plasma clearance CLp was relatively constant across doses in all species and averaged 15 ml/min/kg for rats, 11 ml/min/kg for mice, and 2.5 ml/min/kg for monkeys versus 0.578 ml/min/kg in humans. Likewise terminal elimination half-life values (t1/2) averaged 88, 76, and 127 min in rats, mice and monkeys, respectively, whereas elimination was somewhat prolonged in humans (mean t1/2 = -5 hr following single iv doses ranging from 0.38 to 0.227 mg/kg. Volumes of distribution at steady state (Vd_{ss}) in rats (range 0.467 to 0.923 L/kg) and mice (0.85 L/kg) were approximately equal to that of body water (0.6 L/kg) suggesting that the drug was distributed to the tissues. Steady state Volumes of Distribution were less in monkeys and man ranged from 0.122 to 0.199 L/kg (approximately equal to the blood + extracellular fluid volumes 0.271 l/kg) and suggest a more limited distribution to tissues. The calculated mean blood clearance (CLB) was 25 ml/min/kg for the rat, 16 ml/min/kg for the mouse and 4.1 ml/min/kg for the monkey. The pharmacokinetic parameters (CLP, t½, and Vdss) remained relatively constant up to an i.v. dose of 10 mg/kg in the animal species studied and following iv doses ranging from 0.38 to 0.227 mg/kg in humans. ### Distribution: # In Vitro Plasma Protein binding: The extent of [14 C]MK-0476 (2 to 250 µg/ml; Batch # L-706,631-004S007, specific activity = 21.22 µCi/mg and # L-706,631-004S009, specific activity = 13.58 µCi/mg) binding to ^bClinical i.v. dose (mean body weight = 79.3 kg) plasma protein was determined in in vitro studies using blood samples from CD-1 mice Sprague Dawley rats, rhesus monkeys, and Humans. These studies showed that [14 C]MK-0476 was extensively bound to plasma proteins from all species, with the unbound fraction only amounting to 0.3% for mice at (10 and 50 µg/ml), 0.9% in rats and 0.4% in plasma from monkeys and human [Ref. G-7]. Further studies showed that [14 C] Montelukast bound to both albumin and α 1-acid glycoprotein.. Binding to albumen was unsatrurable, with a constant unbound fraction (0.2%), at concentrations up to 250 µg/ml, whereas binding to α 1-acid glycoprotein was saturated at a concentration of 10 µg/ml. Collectively, these studies suggest binding to albumin, may account for the majority of the extensive plasma protein binding, especially at higher drug concentrations. # In Vitro Partition Between Erythrocytes and Plasma: In vitro studies examined the distribution of [14 C]MK-0476 (2 to 250 $\mu g/ml$; Batch # L-706,631-004S007, specific activity = 21.22 μ Ci/mg and # L-706,631-004S009, specific activity = 13.58 μ Ci/mg) between blood cells and plasma and the partitioning of [14 C]MK-0476 (2-250 μ g/ml) Results from these studies showed that the blood/plasma concentration ratio (Cblood/Cplasma) ranged from in rats, monkeys and man at all concentrations tested. In addition, the experiments revealed log P values of the concentration ratios which ranged form at the concentrations tested. These latter findings indicated that MK-0476 was fairly hydrophobic. ### Tissue Distribution: The tissue distribution of [14C]Montelukast-derived radioactivity was evaluated in rats using scintillation counting following sample combustion after an i.v. administration of [14C]Montelukast (5 mg/kg i.v., [Ref. G-1]). The distribution of [14C]montelukast-derived radioactivity was also assessed using whole body autoradiography following single oral doses of 10 mg/kg in male rats [Ref.G-8] and after single oral doses of 5 mg/kg dose in male, nonpregnant and pregnant (Day 18 of gestation) female rats [Ref.G-9]. Table 4 (Succeeding page) presents a tabulated summary of the radioactive equivalents ($\mu g/g$ or $\mu g/ml$) observed in rat tissues at 1 to 24 hours following administration of the [14 C]montelukast i.v. dose. APPEARS THIS WAY ON ORIGINAL Table 4 Radioactive
Equivalents (μg/g or μg/ml) of [14C]Montelukast in the Tissues of Rats Receiving 5 mg/kg i.v. (Mean ± SD; n=3) [Sponsors Table 17 Ref. G-1 Vol. 29 pp. G-65] | Hours After Dose | | | | | | | |------------------|-------------------|-------------------------------------|--|-------------------|--|--| | Tissue | 1 Hour | 2 Hours | 4 Hours | 24 Hours | | | | Liver | 7.73 ± 0.869 | 4.70 ± 0.911 | 2.67 ± 0.704 | 0.392 ± 0.025 | | | | Kidney | 3.76 ± 0.253 | 1.98 ± 0.274 | 0.808 ± 0.218 | 0.108 ± 0.007 | | | | Mesenteric | | | 0.000 1 0.218 | 0.108 ± 0.00 | | | | Lymph Nodes | 3.18 ±2.31 | 1.56 ± 0.474 | 1.23 ± 0.503 | 0.002 . 0.024 | | | | Pancreas | 2.41 ± 0.840 | 0.847 ± 0.205 | 1.26 ± 0.817 | 0.092 ± 0.024 | | | | <u>F</u> at | 2.01 ± 0.221 | 0.900 ± 0.189 | 0.380 ± 0.020 | 0.100 ± 0.013 | | | | Heart | 1.71 ± 0.267 | 0.877 ± 0.092 | 0.396 ± 0.020
0.396 ± 0.071 | 0.076 ± 0.011 | | | | Adrenals | 1.53 ± 0.240 | 0.855 ± 0.191 | 0.390 ± 0.071 -0.442 ± 0.089 | 0.161 ± 0.012 | | | | Plasma | 1.22 ± 0.249 | 0.641 ± 0.097 | 0.371 ± 0.040 | 0.414 ± 0.258 | | | | Lung | 0.939 ± 0.221 | 0.410 ± 0.052 | 0.371 ± 0.040 0.256 ± 0.033 | 0.041 ± 0.002 | | | | Bladder | 0.813 ± 0.147 | 0.416 ± 0.097 | 0.240 ± 0.092 | 0.139 ± 0.034 | | | | Skin | 0.703 ± 0.119 | 0.314 ± 0.038 | | 0.101 ±0.022 | | | | Muscle | 0.652 ± 0.099 | 0.271 ± 0.020 | 0.190 ± 0.089 | 0.072 ± 0.028 | | | | Spleen | 0.560 ± 0.065 | 0.387 ± 0.036 | 0.130 ± 0.020 | 0.085 ± 0.031 | | | | Testes | 0.307 ± 0.021 | 0.247 ± 0.036 0.247 ± 0.036 | 0.219 ± 0.042 | 0.136 ± 0.012 | | | | Red Blood Cells | 0.166 ± 0.031 | 0.083 ± 0.016 | 0.129 ± 0.009 | 0.030 ± 0.004 | | | | Brain | 0.117 ± 0.004 | | 0.051 ± 0.011 | 0.041 ± 0.002 | | | | | | 0.136 ± 0.005 | 0.085 ± 0.017 | 0.142 ± 0.027 | | | | Stomach | 0.515 ± 0.432 | ract (Tissue and Co | | | | | | Small Intestine | 64.8 ± 6.74 | 0.280 ± 0.153 | 0.391 ± 0.298 | 0.277 ± 0.296 | | | | Large Intestine | 0.195 ± 0.036 | 79.5 ± 4.23 | 40.0 ±11.7 | 1.05 ± 0.238 | | | | Cecum | | 0.108 ± 0.042 | 15.0 ± 7.63 | 0.860 ± 0.739 | | | | Urine | 0.175 ± 0.040 | 1.18 ±1.75 | 30.6 ± 6.45 | 1.90 ± 0.512 | | | | Feces | | <u> </u> | | 0.468 ± 0.122 | | | | 1 0003 | | | | 81.1 ± 2.40 | | | [14C]montelukast-derived radioactivity was widely distributed in rats following i.v. administration [Ref. G-1]. The majority of the radioactivity was recovered in the GI tract and feces, indicating that biliary excretion was the major route of elimination in rats. Tissues with radioactivity greater than plasma at 1 hr after dosing included: liver, kidney mesenteric lymph nodes, pancreas, fat, heart, and adrenals, with only a trace amount detected in brain. Radioactivity in all tissues declined with time, and the remaining radioactive equivalents in tissues were very low at 24 hr postdose. Table 5 (Succeeding page) presents a tabulated summary of the radioactive equivalents (μ g/g or μ g/ml) observed in rat tissues at 1 to 24 hours following oral administration of the 10 mg/kg [14 C]-montelukast dose. Table 5 Radioactive Equivalents (μg/g or μg/ml) of [14C]Montelukast in the Tissues of Rats Receiving 10 mg/kg p.o. (Mean + SD; n=3) [Sponsors Table 2 Ref. G-8 Vol. 29 pp. G-239] | <u> </u> | Hours After Dose | | | | | |--------------------|--------------------|-----------------|---|--|--| | <u>Tissue</u> | 1 Hour | 6 Hours | 24 Hours | | | | Small Intestine | 85.9 ± 39.7 | 27.2 ± 6.29 | 1.68 ± 0.74 | | | | Stomach | 29.53 ± 17.5 | 8.27 ± 4.14 | 1.14 ± 1.43 | | | | Liver | 20.3 ± 16.2 | 6.65 ± 3.15 | 0.77 ± 0.09 | | | | Large Intestine | 15.4 ± 1.28 | 24.9 ± 15.8 | 1.31 ± 0.27 | | | | Cecum | 4.02 ± 0.54 | 67.7 ± 27.1 | 3.95 ± 0.84 | | | | Kidney | 2.56 ± 1.20 | 1.95 ± 0.45 | 0.21 ± 0.07 | | | | Mesenteric Lymph | | | 3.21 2 0.07 | | | | Nodes | 5.42 ±2.30 | 4.0 ± 0.98 | 0.24 ± 0.05 | | | | Pancreas | 4.18 ± 1.79 | 2.84 ± 1.40 | 0.19 ± 0.07 | | | | Fat | 1.20 ± 0.61 | 0.86 ± 0.26 | 0.16 ± 0.03 | | | | Heart | 1.44 ± 0.83 | 0.88 ± 0.39 | 1.08 ± 0.69 | | | | Adrenals | 1.81 ± 0.58 | 0.54 ± 0.47 | 0.33 ± 0.15 | | | | Plasma | 1.23 ± 0.75 | 0.49 ± 0.13 | 0.07 ± 0.02 | | | | Lung | 1.62 ± 1.25 | 1.51 ± 1.84 | 0.39 ± 0.27 | | | | Bladder | 0.49 ± 0.15 | 0.45 ± 0.17 | 0.10 ± 0.03 | | | | Skin | 0.41 ± 0.11 | 0.30 ± 0.05 | 0.10 ± 0.05 | | | | Muscle | 0.40 ± 0.16 | 0.34 ± 0.04 | 0.05 ± 0.02 | | | | Spleen | 0.61 ± 0.18 | 0.52 ± 0.37 | 0.16 ± 0.07 | | | | Testes | 0.38 ± 0.26 | 0.39 ± 0.16 | 0.05 ± 0.02 | | | | Red Blood Cells | 0.19 ± 0.11 | 0.15 ± 0.02 | 0.06 ± 0.02 | | | | Brain | 0.12 ± 0.06 | 0.84 ± 0.70 | 0.68 ± 0.54 | | | | Gastrointestin | al Tract (Tissue a | and Contents. % | of Dose) | | | | Stomach | 33.2 ± 17.4 | 4.40 ± 2.89 | 1.38 ± 2.30 | | | | Small Intestine | 46.0 ± 15.5 | 27.3 ± 14.8 | $\frac{1.38 \pm 2.30}{0.711 \pm 0.373}$ | | | | Large Intestine | 4.63 ± 2.25 | 13.0 ± 14.1 | 9.94 ± 4.22 | | | | Cecum | 1.02 ± ().597 | 48.8 ± 25.0 | $\frac{3.54 \pm 4.22}{10.2 \pm 3.46}$ | | | | Urine | | | 0.458 ± 0.048 | | | | Feces | | | $\frac{0.438 \pm 0.048}{106 \pm 20.7}$ | | | | Recommend Excreta- | 84.9 + 3.78 | 983°± 12-36 | | | | | | 111 ± 10.6 | =111 ± 13.7= | 128 ± 25.3
130 ± 25.2 | | | The data in table 5 above show a pattern of distribution following oral dosing which was qualitatively similar to that seen following i.v. dosing. At 1 hr after administration of the 10 mg/kg oral dose, tissues which had levels of [14C]montelukast-derived radioactivity greater than that in plasma included: in descending order small intestine, stomach, liver, large intestine, mesenteric lymph nodes, pancreas ,cecum, kidney, adrenal, lung and heart, with only trace amounts detected in the brain and red blood cells. Radioactivity declined over time with only ~1% remaining in the tissues at 24 hr after dosing. Essentially all of the radioactivity was recovered in the feces and only 0.5% recovered in the urine [Ref. G-8]. The second autoradiographic study in which a 5 mg/kg oral dose of [14C]montelukast was administered, male and nonpregnant female rats showed essentially the same pattern of distribution outlined above (i.e. highest contents observed in intestinal contents, gastric contents, mesenteric lymph nodes, bile and liver). At 96 hr after dosing only the intestinal contents of the male showed detectable levels of radioactivity. Finally, in an autoradiographic study in pregnant rats, the distribution of [14C]-MK-0476-derived radioactivity to fetoplacental tissues was investigated following administration of a 5 mg/kg p.o. dose. At 1 hr postdose, radioactivity of stronger intensity than maternal blood was detected in the ovary and mammary glands, while intensity in the placenta, fetal membrane, uterus, fetal liver, clitoral gland, fetus and amniotic fluid was weaker than that of maternal blood. At 24 hr, radioactivity in the fetoplacental tissues was barely detectable. The pattern of distribution of radioactivity in tissues other that fetoplacental tissues was similar to that seen in non pregnant females. #### Metabolism: The metabolic profiles of MK-0476 were determined in plasma and bile samples from humans (100 mg or 50 mg, p.o.), monkey (plasma only, 50 mg/kg p.o. or 10 mg/kg i.v.), rat (20 mg/kg i.v., or 200 mg/kg p.o.) and mouse (50 or 100 mg/kg p.o.) were determined Additional in vitro hepatic microsomal metabolism studies using hepatic microsomal preparations from mice, rats, monkeys and humans were conducted in order to determine the in vitro metabolism of MK-0476 as well as to identify the monooxygenase system and P-450 isoforms responsible for MK-0476 metabolism [Ref. G-15]. In all species the unchanged MK-0476 accounted for the majority of the observed plasma radioactivity. Human plasma also contained low levels of the diastereometric 21- hydroxy metabolites and 36-hydroxy metabolites. Plasma metabolites identified in mice included: the diasterometric 21 (S)-hydroxy (M5a, L-772,146), 21(R)-hydroxy (M5b, L772-145), and 36-hydroxy metabolites (M6a, L-775,066 and M6b, L-775,065, absolute stereochemistry unknown). Monkey plasma also contained the diastereometric 21- and 36-hydroxy metabolites and in rats all metabolites except the 36-hydroxy (M6a) metabolite were observed. Finally rat and mouse plasma showed both a sulfoxide (M1) and a phenol (M3 partial structure) metabolite, whereas only the M1 was evident from monkeys and neither metabolite was evident in human plasma Comparison of profiles of bile from human (50 mg p.o.), rat (20 mg/kg i.v. or 200 mg/kg p.o.) and mouse (50 mg/kg p.o.) revealed the following species specific differences: The major metabolite in human bile was the dicarboxylic acid (M4), whereas in rat and mouse bile, the acyl glucuronide conjugant (M1) was the major metabolite, although trace quantities of the M4 metabolite were detectable in both rat and mouse bile using LC-MS/MS. Other metabolites common to all species included a sulfoxide (M1), a phenol (M3 partial structure) and the diastereomeric 21-(M5a and M5b) and the 36-hydroxyl metabolites (M6a and M6b). Figure 1 below presents a qualitative summary of the metabolic profiles of MK-0476 in plasma and bile form humans, monkeys, rats and mice following in vivo dosing. In vitro studies on the hepatic microsomal metabolism of MK-0476 showed four prominent metabolites were common to humans (adult and pediatric), mice, rats, and monkeys. These metabolites were identified as the acyl glucuronide (M1), sulfoxide, (M2), 21-hydroxylated (M5), and 36-hydroxylated (M6) metabolites. The rank order
of acyl glucuronidation (M1) was: Mouse > monkey > rat > human, whereas the formation of the (M2 + M5 + M6) metabolites appeared comparable in rats, humans, and monkeys, but was somewhat less in mice (See Table 6, below). There were no significant differences in the metabolic profiles in human microsomes from adults (age = 49 ± 8) versus pediatrics (age = 9 ± 3). Additional kinetic studies also indicated that acyl glucuronidation was more prevalent in rodents relative to humans. Table 6. Formation of MK-0476 metabolites by liver microsomes from mice, rats, monkeys and humans (Sponsor's Table 1 Ref. G-15 Vol. 29 pp. G-471) | Species | Formation of Metabolites (pmol/min/mg protein) | | | | | | | | | |---------|--|-----------------|-------------|-----------------|-----------------|-----------------|----------|--|--| | | M1 | M2a | M2b | M5a | M5b | M6a/b | 146-1401 | | | | Mouse | 675 | 13.7 | 21.1 | 1.77 | 6.06 | | M6a:M6b | | | | Rat | 486 ± 135 | 50.7 + 15.5 | 93.4 ± 28.4 | 2 22 . 0 60 | | 2.16 | 13:87 | | | | Monkey | 611 ± 91 | 374 . 119 | 50.1 10.4 | 2.33 ± 0.09 | | | 27:73 | | | | Human | 251 ± 72 | 5(0 40 0 | 52.1 ± 13.6 | | | | 33:67 | | | | Tiunan | 231 ± 72 | 36.9 ± 49.2 | 68.8 ± 45.6 | 5.66 ± 5.58 | 13.1 ± 11.8 | 5.80 ± 2.93 | 73:27 | | | ^a Data represent mean, n=2 for mouse or mean ± SD, n=3 for rat and monkey, n=6 (M1) or 12 (M2a to M6a/b) for human Marker studies which identified the human P-450 isoforms responsible for MK-0476 metabolism showed that the microsomal CYP3A4 isoform catalyzed the diastereomeric sulfoxidation and 21-hydroxylation, whereas the CYP2C9 isoform selectively formed the 36-hydroxylated metabolites. Finally the rank order of percent contribution of oxidative metabolism to total in vitro metabolism of MK-0476 ($\sum V_{max}/K_m$) was: monkey (20%) = rat (20%) > human (17%) > mouse (1.3%). #### Excretion: Table 7 (below) presents a tabulated summary of the of the recovery of [14C]Montelukast-derived radioactivity following i.v. dosing in rats (5 mg/kg) and monkeys (2 mg/kg) and following oral dosing in humans (100 mg/kg). Table 7. Recovery of [14C]Radioactivity in Urine and Feces in Rats, Monkeys and Humans (Mean ± SD) (Sponsor's Summary Table G-6 Vol. 29 pp. G31) | Species | D 0.14 | % of Dose | | | |------------------|--------------------------|-------------|------------------------------------|--| | Species | Dose of [14C]Montelukast | Feces | Urine | | | Rat (n=5) | 5 mg/kg, i.v. | 82.4 ± 8.89 | 0.71 ± 0.14 | | | Monkey $(n = 4)$ | 2mg/kg, i.v. | 88.0 ± 1.95 | 0.71 ± 0.14
0.33 ± 0.03 | | | Human $(n = 6)$ | 100 mg, p.o. | 86.3 ± 3.65 | 0.33 ± 0.03 0.118 ± 0.045 | | The data in table 7 (preceding page) show that almost essentially all of the administered radioactivity was excreted in the feces of rats monkeys and humans following oral and i.v. Ratio of disatereomers of 36-hydroxy- MK-0476 was determined by LC-MS/MS using an AGP chiral column. dosing. Biliary excretion was demonstrated to play a major role in the elimination of MK-0476. This was demonstrated by the extensive recovery of [14C]-montelukast derived radioactivity in the feces following i.v. administration in rats and monkeys [Ref. G-1]. Biliary excretion was also directly demonstrated using bile duct cannulated rats where essentially all of the radioactivity was recovered in the bile in 6 hr following administration of MK-0476 (20 mg/kg i.v.) [Ref. G-1]. Additional analysis of the metabolic profile of MK-0476 in bile from rats indicated that unchanged drug accounted for only 4% of the dose. Thus while the unchanged parent compound accounts for the majority of circulating radioactivity, montelukast is extensively metabolized in the liver prior to its excretion in the bile and subsequent elimination in the feces in rats. In humans recovery of radioactivity in the feces was > 86% following a single oral dose of 100 mg [14C]montelukast, with about 80% of the circulating radioactivity accounted for by the unchanged parent compound [Ref. G-13, Vol. 29 pp. G397]. However, qualitative analysis of human bile following administration of a 50 mg p.o. dose showed that MK-0476 was extensively metabolized to a major and several minor metabolites. These findings suggest that montelukast is extensively metabolized by the liver and the majority of the metabolites are excreted in the bile, with only low levels of metabolites observed in plasma. Thus, the studies in humans indicated that hepatic metabolism followed by biliary excretion plays a significant role in the elimination of montelukast and its metabolites, as was true for the other species studied. ### ADME SUMMARY Absorption following oral dosing with montelukast rapid in rats and mice at low doses (at 5 mg/kg, Tmax =22 and 30 min) but increased to 1.3 and 1.5 hr at top doses of 200 mg/kg. More prolonged absorption was seen in monkeys (Tmax =68 min to 1.7 hr over a dose range of 5 to 150 mg/kg) and humans (Tmax = 3.7 hr at a 10 mg/day dose). Oral bioavailability of MK-0476 was greatest in humans (67%) followed by mouse and monkey (25-61%) and lowest in rats (33%). Following i.v. dosing plasma concentrations declined in a multiexponential fashion in rats, mice, and monkeys with respective t½ values of 88, 76, and 127 min versus ~5 hr in humans. Plasma clearance is essentially constant up to 10 mg/kg i.v. in all animal species, with greatest clearance observed in rat (15 ml/min/kg) followed by mouse (11 ml/min/kg), monkey (2.5 ml/min/kg), and human (0.58 ml/min/kg). The Vd_{ss} of montelukast varied from 0.85 L/kg for mice (close to total body water) to 0.13 L/kg for humans (approximately equal to blood volume + extracellular fluid volume). Montelukast binds extensively (>99%) to plasma proteins (primarily albumin) and preferentially distributes to plasma component of blood (blood/plasma ratio ~ 0.65) in rats monkeys and man. [\frac{14}{2}]montelukast-derived radioactivity was widely distributed following i.v. and oral dosing in rats with liver, kidney, mesenteric lymph nodes, pancreas, fat, heart and adrenals showing levels greater than plasma and little radioactivity in brain and red blood cells. Autoradiographic studies in pregnant rats also showed that in addition to the aforementioned tissues, radioactivity also distributed to the ovaries and mammary glands at levels which exceeded that in blood. Montelukast was extensively metabolized in humans, mice, rats, and monkeys with the majority of metabolites excreted in bile and feces, with only low levels of metabolites observed in plasma. Major metabolic pathways included: (a) acyl glucuronidation, (b) sulfoxidation, (c) hydroxylation of the isopropylphenyl moiety, (d) further oxidation of the 36-hydroxy metabolite to a dicarboxylic acid, and (e) hydroxylation at the 21-position. Diastereomers of the sulfoxide, 21- and 36-hydroxy and the dicarboxylic acid analogs were common to all species. In rodents, acyl glucuronidation is predominant, while in humans, oxidation at the 36-position is favored. The Cytochrome P-450 isoforms: CYP3A4 (catalyzes sulfoxidation and 21-hydroxylation) and CYP2C9 (selectively forms the 36-hydroxylated metabolites) were exclusively responsible the formation of oxidative metabolites. Biliary excretion was shown to be the the major route of elimination of montelukast and its metabolites in rat, monkey and human, with less than 1% recovery in the urine after i.v. or oral administration. Interspecies comparisons of PK-data (i.v. and oral-) and metabolic handling are contained in (Table 2 page 9 and Table 3 page 11) and Figure 1 page 15 of this review, respectively. These comparisons showed that the pharmacokinetic and metabolic handling of montelukast was qualitatively comparable in most species tested. ### **TOXICOLOGY** ### Single Dose Exploratory Acute Oral Toxicity of L-706,631-002P in Female Mice (TT#92-2820 Vol. 30, pp. H-61) Methods: This study was conducted in order to attempt to find the approximate lethal dose $_{50}$ of L-706,631-002P, a process intermediate and dicyclohexylamine salt of MK-0476. L-706,631-002 (lot #7), was dissolved in 0.5% aqueous methylcellulose and administered to female mice via gavage at doses of 320, 800, and 2000 mg/kg (n = 3 mice/group) and at a dose 5000 mg/kg (n = 1). Mice were observed for mortality and clinical signs of drug effects for seven days after dosing. Results: L-706,631-002P produced clinical signs of ataxia, decrease activity, bradypnea, ptosis, (2000 mg/kg only) and clonic convulsions (5000 mg/kg only) from 30 min through day 3 after dosing. Death occurred within 30 min to day 3 in the mouse at the 5000 mg/kg dose and in 1 of 3 mice at the 2000 mg/kg dose. The minimum lethal dose was 2000 mg/kg and the maximum nonlethal dose was 800 mg/kg. The LD₅₀ for L-706,631-002 was probably between 2000 and 5000 mg/kg in mice. In conclusion, L-706,631-002P, a process intermediate and dicyclohexylamine salt of MK-0476, was well tolerated in mice at acute doses up to 800 mg/kg, p.o., but produced death preceded by signs of CNS toxicity at higher doses of 2000 and 5000 mg/kg. The LD50 for L-706,631-002P was between 2000 and 5000 mg/kg in mice. ### LOCAL TOLERANCE Exploratory Dermal Irritation Study in Rabbits TT #94-2649 (Vol. 30, pp.H-20) Study Dates: 26 APR 94-15 AUG 94 Testing Lab: Merck Research Laboratories, West Point, PA Test Articles: L-706,631-001M (lot # 24) The study was designated as exploratory and thus was not accompanied by a GLP: signed GLP statement. Methods: The potential for dermal irritative effects of L-706,631 was determined in rabbits (2male and 1 female) following dermal application of 500 mg (neat powder) on a 5 cm² dorsal site (covered with a gauze pad, moistened with 0.5ml of saline, and wrapped with an occlusive dressing) for 24 hours. Treatment sites were examined at 24 hr intervals and results were recorded according to the Draize scoring
system (J. Pharmacol. Exp. Therap. 82:377-390) Results: L-706,631 produced well defined erythema in all rabbits after 24 hours of treatment, becoming very slight on days 3 and 4 and resolving by day 8. Thus, the results of this study indicated that L-706,631 is a mild dermal irritant in rabbits. Study Dates: 26 MAY 94 to 06 OCT 94 Testing Lab: Merck Research Laboratories, West Point, PA Test Articles: L-706,631-001M024 GLP: The study was not accompanied by a signed GLP statement. Methods: Results: L-706,631 produced no with only a weak effect on $(0.419 \pm 0.035 \text{ versus } 0.056 \pm 0.002 \text{ in control})$ such that final irritancy scores were 6.3 for L706,631 and 1.2 for controls. Thus, L-706,631 was classified as a mild irritant to the eve. # Exploratory Primary Eye Irritation Study in Rabbits TT #94-4269 (Vol. 30 pp.H-35) Study Dates: 26 MAY 94 to 26 OCT 94 Testing Lab: Laboratories Merck Sharp & Dohme-Chibret, Centre de Recherche, Riom, FR Test Articles: L-706,631 001M (Batch 024) The study was not accompanied by a signed GLP statement, but was stated to GLP: be conducted in accordance with SOP. Methods: MK-0476 (100 mg of the sodium salt powder) was placed in the conjunctival sac of the left eye of rabbits; the right eye was untreated. The eye lids were then held together for 20 sec. Ocular reactions were scored based on Draize scoring system at 15, 120 minutes, 24, 48, and 72 hours, 4 and 7 days after instillation. Results: MK-0476 produced slight conjunctival redness and very slight to slight chemosis of bulbar conjunctiva in all rabbits at 15 to 120 min after dosing. slight corneal opacity (3 of 3 rabbits and slight iritis (2 of 3 rabbits) were also noted. The corneal opacity was increased in severity at the 24 hr time period and remained unchanged at the subsequent 48 hr time period. Most of the ocular reactions regressed in 2 of three rabbits by 72 hr after dosing but, not in the third which was killed for humane reasons due to persistent ocular signs. Maximum Draize scores ranged from 13 to 57 and occurred from 120 min to 48 hr after dosing in all three rabbits. Based on these findings the powder of MK-0476 was classified as severely irritating to the eyes of rabbits. # Dermal Irritation Study with L-706,631-002P (a process intermediate and dicyclohexylamine salt of MK-0476) in Rabbits TT #92-2819 (Vol. 30 pp.H-72) Study Dates: 21 SEP 92 to 24 MAY 95 Testing Lab: Merck Research Laboratories, West Point, PA Test Articles: L-706,631-002P (lot # 7) The study was exploratory in nature and thus not accompanied by a signed GLP: GLP statement. Methods:, The potential for dermal irritative effects of L-706,631-002P, a process intermediate and dicyclohexylamine salt of MK-0476 was determined in rabbits (1 male and 2 females) following dermal application of 500 mg on a 5 cm² dorsal site (moistened with 0.5ml of saline, covered with a gauze pad then wrapped with an occlusive dressing) for 24 hours. Treatment sites were examined at 24 hr intervals and results were recorded according to the Draize scoring system (J. Pharmacol. Exp. Therap. 82:377-390) Results: L-706,631-002P, a process intermediate and dicyclohexylamine salt of MK-0476 produced no signs of dermal irritation throughout the 8 day observation period. Thus, the results of this study indicated that L-706,631-002P had no dermal irritant effects in rabbits. Study Dates: June 95 Testing Lab: Laboratories Merck Sharp & Dohme-Chibret, Centre de Recherche, Riom. Test Articles: L-706,631-002P007 a process intermediate and dicyclohexylamine salt of L- 706.631. The study was exploratory in nature and thus was not accompanied by a GLP: signed GLP statement. However, the study was stated to be conducted in accordance with SOP. #### Methods: Results: L-706,631-002P007 produced $(7.75 \pm 1.26 \text{ versus } 0.000 \pm$ 1.73 in controls), but had no effects on permeability such that final irritancy scores were 8.4 for L706,631 and 0.7 for controls. Thus, L-706,631-002P007 was classified as a mild irritant to the eyes. Exploratory Primary Eye Irritation Study with L-706,631-002P in Rabbits TT #92-4269 (Vol. 30 pp.H-126) Study Dates: 02 NOV 92 to 15 JUN 95 Testing Lab: Laboratories Merck Sharp & Dohme-Chibret, Centre de Recherche, Riom, FR Test Articles: L-706,631-002P; Batch #007 The study was exploratory in nature and thus was not accompanied by a GLP: signed GLP statement. However, the study was stated to be conducted in accordance with SOP. Methods: L-706,631-002P, a process intermediate and dicyclohexylamine salt of MK-0476, (100 mg of the powder) was placed in the conjunctival sac of the left eye of rabbits; the right eye was untreated. The eye lids were then held together for 20 sec. Ocular reactions were scored based on Draize scoring system at 15, 120 minutes, 24, 48, and 72 hours, 6 and 7 days after instillation. Results: L-706,631-002P produced evidence of irritation which included moderate to severe conjunctival redness and slight to severe discharge of the treated eyes, very slight to severe chemosis and slight to severe discharge were seen in all rabbits. Two rabbits showed iris congestion was noted in two rabbits and was associated with very slight edema of the cornea in one. Evidence of ocular irritant effects were first observed at the 15 min time point and were maximal (i.e. maximal Draize scores 1 to 20) between 120 and 48 hours after dosing. Evidence of irritation persisted in 2 of the three rabbits at the 72 hour time point, but were resolved in all rabbits by Day 6 after dosing. According to the interpretation of eye irritation tests by Kay and Calendra¹, L-706,631-002P was classified as mildly irritating to the eyes of rabbits. # SUMMARY OF STUDIES ON LOCAL TOLERANCE: Dermal and ocular studies on the local tolerance to the montelukast sodium bulk drug showed it to be mildly irritating to the skin of rabbits. assays also indicated that montelukast had mild ocular irritant potential, whereas Draize scores indicated it to be severely irritating to the eyes of rabbits. In additional studies reviewed herein, the local tolerance of L-706,631-002P, a process intermediate and dicyclohexylamine salt of MK-0476 was assessed. Results from these studies showed that L-706,631-002P had no dermal irritant effects in rabbits, but was classified as a mild irritant to the eyes based on the results of both the and on the basis of Draize scores from in vivo studies, wherein it was administered directly to the eyes of rabbits. Oral/Subcutaneous Immunogenicity Study in Guinea Pigs TT #95-9805 (Vol.31 pp.Q-87) Study Dates: 16 MAR 95 to 21 JUN 95 Testing Lab: Test Articles: MK-0476; L-706,631-001M (lot # 042) GLP: The study was accompanied by a signed GLP statement. Methods: The potential immunogenicity of MK-0476 was studied in guinea pigs Kay J.H. and Calandra J.C.,; Interpretation of Eye Irritation Tests. J. of the Society of Cosmetic Chemists. 13: 281-289, 1962 #### Results: Guinea pigs immunized with MK-0476 (1 or 10 mg/animal) orally or (1 mg/animal) subcutaneously showed no systemic anaphylactic type reactions after intravenous challenge with MK-0476 (1 mg/animal). In contrast, challenge with the positive control produced severe systemic anaphylactic reactions in 4 of the 5 animals tested resulting in death in 3 of the said animals. Finally, neither MK-0476 nor . conjugate induced systemic reactions in two negative control animals. Likewise, the Four-hour failed to demonstrate a reaction in in naive guinea pigs receiving intradermal injections of sera from guinea pigs administered either the MK-0476 (1 or 10 mg/animal) solution orally or the MK-0476 (1 mg/animal) emulsions subcutaneously when challenged intravenously with MK-0476 (1 mg/animal). Only 3 of the 5 sera from positive controls had of 26 or 213. However, 2 sera from two animals with mild and severe reactions did not show a positive reaction. from negative control animals showed no reaction. In conclusion, under the conditions of this assay, montelukast did not induce active systemic or passive cutaneous anaphylaxis in guinea pigs. ### OVERALL SUMMARY AND EVALUATION Montelukast sodium is a potent and highly selective leukotriene D_4 (LTD₄) antagonist which acts at the structurally specific, high affinity Cys LT₁ receptor. Currently the NDA applications 20-829 and 20-830 propose to market montelukast (Singulair TM , 10 mg oral tablet and 5 mg oral chewable tablet) for the prophylaxis and chronic treatment of asthma in adults and pediatric patients 6 years of age and older. In support of the current application the Sponsor has submitted preclinical studies including: in vitro and in vivo pharmacology, ancillary pharmacology, ADME studies in rats, mice, and monkeys including placental and milk transfer studies in rats and/or rabbits; acute single dose oral and i.v. toxicity studies in rats and mice; subacute toxicity testing in adult monkeys (5 and 14 week oral toxicity; 16 day i.v. toxicity and 17 day i.v. irritation studies), infant monkeys (14 week oral toxicity) rats (5 and 14 week oral toxicity and 16 day i.v. toxicity) and mice (5 and 14 week oral toxicity); chronic 53 week oral toxicity testing in rats and monkeys, reproductive toxicology studies (Segment I oral fertility studies in male and female rats, Segment II oral developmental toxicity studies in rats and rabbits and a Segment III oral late gestation and lactation study in rats); Genetic toxicity/mutagenic potential studies Carcinogenicity studies (106-week oral study in rats, and 92-week oral study in mice); Local tolerance studies (Dermal irritation in rabbits; and Ocular irritation study in rabbits) and special toxicity studies (Phototoxicity in mice, enzyme induction in mice and rats, in whole blood and washed RBCs from rat, human and dog; drug interaction studies in mice; and immunognenicity studies in guinea pigs). Pharmacodymamics: Montelukast's potency and selectivity at the Cys LT₁ receptor was demonstrated in in
vitro pharmacology studies including: receptor binding studies on guineapig lung, sheep lung and human dU937 cell membranes, and studies on isolated guinea-pig trachea. In vivo potency and selectivity have also been demonstrated in in vivo studies where montelukast administered by the i.v., aerosol or oral route inhibited leukotriene D4-induced bronchoconstriction in the guinea-pig (ED $_{50} = 0.001$ mg/kg, i.v.; and 13 nM nebulizer concentration), squirrel monkey (ED $_{50} = 0.01$ mg/kg p.o.), and to a lesser degree in conscious sheep when administered by aerosol. Montelukast was devoid of any activity against a variety of other bronchoconstrictors in anesthetized guinea pigs and did not inhibit the binding of 5-lipoxygenase activating protein (FLAP). In vivo pharmacology studies also demonstrated a role for Cys LT1 receptor activation, in the mediation of antigen-induced bronchoconstriction, wherein montelukast inhibited antigen-induced dyspnea in inbred rats (ED $_{50} = 0.032$ mg/kg p.o.), ascaris-induced bronchoconstriction in conscious squirrel monkeys (ED $_{50} = 0.03$ mg/kg p.o.) allergen induced bronchoconstriction in allergic conscious Squirrel monkeys (0.1 mg/kg p.o.) and ascaris-induced early and late phase bronchoconstriction in conscious sheep (1 mg/kg i.v. loading dose + 8 ug/kg/min i.v. infusion). Montelukast administered to dogs in doses up to 10 mg/kg i.v. or 20 mg/kg p.o. was devoid of deleterious effects on cardiovascular, autonomic, renal, gastrointestinal, or respiratory functions and produced no significant behavioral changes in mice at oral doses up to 100 mg/kg. Thus, there were no significant ancillary pharmacological effects at the doses tested, which would raise concern for the currently proposed marketing of singulair. Clinical studies which have demonstrated that Cys LT1 antagonists can effectively block antigen-induced bronchoconstriction, exercise-induced bronchoconstriction, and aspirin- induced bronchoconstriction in asthmatic subjects^{2,3,4,5} portend a role for mediators such as LTD4 and LTE4 in the pathogenesis of asthma. Thus, montelukast may have therapeutic value as a LTD4 receptor antagonist in the treatment of asthma. Pharmacokinetics: Montelukast has relatively poor oral bioavailability in rats (33%), but greater bioavailability in humans (67%) followed by mouse and monkey (25-61%). In rats, Montelukast distributed primarily to liver, kidney, mesenteric lymph nodes, pancreas, fat, heart and adrenals, with little distribution in brain and red blood cells. Montelukast crossed the placental barrier and entered the fetal circulation in rats and rabbits and significant amounts of MK-0476 transferred into the milk of lactating rats. Montelukast extensively binds (>99%) to plasma proteins (primarily albumin) in all species. Montelukast undergoes extensive oxidative metabolism in the liver, with the majority of its metabolites excreted in the bile and only low levels of metabolites observed in plasma.. Its metabolic profiles were qualitatively similar across rats, mice, monkeys, and man, with major metabolites (M1-M6) formed via the following metabolic pathways: (a) acyl glucuronidation (M1), (b) sulfoxidation (M2), (c) hydroxylation of the isopropylphenyl moiety (M3), (d) further oxidation of the 36-hydroxy metabolite (M6) to a dicarboxylic acid (M4), and (e) hydroxylation at the 21-position (M5). The major metabolite in bile from rats and mice was the acyl glucuronide conjugant (M1) whereas a dicarboxylic acid (M4) was the major biliary metabolite in humans. In vitro studies using human liver microsomes showed oxidative metabolism was catalized mainly by cytochrome P450 enzymes and involved the P450 isoform, CYP3A4 in the sufoxidation (M2a/b) and 21-hydroxylation (M5a/b) of MK-0476 and the CYP2C9 isoform for the 36-hydroxylation pathway (M6a/b). Biliary excretion was the major route of elimination of Montelukast and metabolites in rat, monkey and human, with less than 1% recovery in the urine after i.v. or oral administration. Elimination appeared multiexponential in rats, mice, and monkeys with respective t1/2 values of 88, 76, and 127 min versus -5 hr in humans. Acute Toxicity: Acute oral and i.v. toxicity of Montelukast was evaluated in rats and mice. In rats and mice oral doses ≥ 1250 mg/kg produced signs of CNS toxicity including decreased activity and ptosis in mice and decreased activity, salivation and soft stool in rats. The minimum lethal oral dose in mice and rats was > 5000 mg/kg and the oral NOEL was ² Rasmussen JB et al. Leukotriene D4-receptor blockade inhibits the immediate and late bronchoconstrictor responses to inhaled antigen in patients with asthma. J. Allergy Clin Immunol 1992;90:193-201. ³ Manning PJ et al. Inhibition of exercise-induced bronchoconstriction by MK-571, a potent leukotriene D4-receptor antagonist. N Engl J Med 1990;323:1736-1739. ⁴ Christie PE et al. The potent and selective sulfidopeptide leukotriene antagonist, SK&F 104353, inhibits aspirin-induced asthma. Am Rev Respir Dis 1991;144:957-958. ⁵ Dahlén B, et al. The leukotriene antagonist MK-0679 improves baseline pulmonary function and blocks aspirin-induced airway obstruction in aspirin-sensitive asthmatics. Am Rev Respir Dis 1992;145 (suppl):A15. 625 mg/kg. The maximum non lethal i.v. dose was 78 mg/kg in rats and 156 mg/kg in mice, with 100% mortality seen at the next higher doses of 156 and 312 mg/kg in rats and mice, respectively. Clinical signs of CNS toxicity (decreased activity, bradypnea, ataxia, convulsions and/or gasping) preceded death following i.v. dosing in both species. A subsequent acute toxicokinetic study in mice demonstrated a plateau for systemic exposure in mice at approximately 800-1200 mg/kg. Subacute and Chronic Toxicity: Subacute toxicity studies were conducted in mice, rats, and monkeys, with chronic toxicity studies conducted in rats and monkeys. Primary targets organs of toxicity included the GI tract in mice, rats, and monkeys and the bone marrow in monkeys. In mice, abdominal distention and/or cecal dilation and mortality occurred after oral dosing at levels of 800 and 1200 mg/kg for 5-weeks and at doses ≥200 mg/kg for 14 weeks. The NOAEL in the 14-week study in mice was 50 mg/kg (approximately 250 and 200 times, respectively, the proposed adult and pediatric doses on mg/kg basis). In single dose pharmacokinetic studies in mice oral doses of 200 mg/kg resulted in a mean AUC values of 9904 µg·hr/ml, whereas AUC values at the NOAEL dose (50 mg/kg) averaged 2411 µg·hr/ml. In rats, treatment-related mortality occurred at doses of 800 mg/kg in one of two 14-week studies and at doses ≥200 mg/kg in a 1 year study. GI toxicity at these doses was evidenced grossly as dose-dependent dilation of the whole or part of the GI tract. However, histological correlates of ulcer of the nonglandular mucosa, moderate dilation of the cecum, atrophy of the duodenal villi, and typhlitis, were seen only in a limited number of the animals which died. Other target organs of toxicity in rats which died or were sacrificed early included: pancreas (zymogen granule depletion/cytoplasmic rarefaction), adrenals (hemorrhage/degeneration of zona granulosa), lung (edema/congestion) and lymphoid system (lymphoid atrophy of spleen, lymph nodes and thymus). Pharmacokinetic analysis in 3month oral toxicity study in rats suggested that saturation of absorption occurred at doses 200-400 mg/kg (AUC range from 163 to 215 μg·hr/ml). Animals which died in both the 3month and 1-year toxicity studies showed comparable toxicity profiles, however death at the 200 mg/kg dose in the 1 year study versus 800 mg/kg in the 14 month study suggested that there is a duration-dependent component to the observed toxicity. The NOAEL in the 1-year rat study was 50 mg/kg. In the 3-month study in rats the 50 mg/kg dose resulted in mean exposures (AUC_{0-24b}) of 58.5 and 37.9 µg·hr/ml in males and females, respectively. In adult monkeys, treatment related mortality was seen at doses of 450 mg/kg after 3 months and at 300 mg/kg after 1 year of dosing. At the 450 mg/kg dose in the 3 month study, two males which were euthanized showed GI findings of necrosis of the glandular fundic cells and depletion of mucinous cells in the stomach, and congestion, erosions and atrophy of the villi and/or mucosa of the intestines). However, GI disturbances other than soft stools and diarrhea were not seen in monkeys in the subsequent 1-year study. Toxicity to the hematopoietic system (hypoplasia/degeneration of erythropoietic tissue in the bone marrow) were seen in high dose monkeys which died or were euthanized in both the 3 month and 1year studies. Multiple organ toxicity observed in monkeys which died included effects on: spleen (congestion, lymphoid depletion, sinusoid congestion, artery and/or fibrinoid necrosis), lymph nodes (edema and inflammatory cell infiltration of the sinusoids and/or fibrinoid arterial necrosis), thymus (lymphoid necrosis), pancreas (focal depletion of zymogen granules). adrenals (degeneration of the zona glomerulosa and/or zona glomerulosa. and single cell necrosis, and congestion of the zona fasciculata), kidneys (hyaline cast, degeneration and single cell necrosis and epithelial cell vacuolation of the tubules), and heart (focal agonal hemorrhage and focal degeneration of the myocardium). Exposures in monkeys at doses ranging form 50 to 450 mg/kg were reduced by about 50% after 13 weeks of dosing versus Day 1 values, suggestive of possible enzyme induction or reduced absorption with repeat dosing in monkeys. The NOAEL for adult monkeys in the 1-year oral toxicity study was 150 mg/kg. The 150 mg/kg dose was shown to result in mean exposures (AUC-values) of 626.7 µg·hr/ml (after 13-weeks of repeated dosing in monkeys). Although treatment-related mortality/euthanasia occurred at a dose of 450 in the 3-month study and at a dose of 300 mg/kg in the 1-year study, determination of a possible duration
dependent component to the toxicity in monkeys was not possible, since the next highest dose tested in both studies (150 mg/kg, p.o.) was the NOAEL in each. A three month toxicity study in infant monkeys (4 weeks of age) showed a toxicity profile comparable to that seen in adults (i.e. GI Toxicity including epithelial vacuolation of the glandular mucosa, chronic enteritis, and colitis in a high dose female which was euthanized and gastritis in 2 high dose males). However, infants may be more sensitive to the toxicity, since one infant monkey required euthanasia at an oral dose of 150 mg/kg, whereas in the 3-month study in adult monkeys, euthanasia was performed on two monkeys at an oral dose of 450 mg/kg. Thus, the NOAEL for infant monkeys in the 3-month oral toxicity study was 50 mg/kg versus 150 mg/kg in the 3-month study in adults. The other most noteworthy finding observed in various studies were increases in ALT: (2-3.6 fold) in rats in a 7-day oral range finding study at doses of 800 and 1600 mg/kg and transiently (\leq 2 fold increases) in rats given doses of 100 and 200 mg/kg in a 5-week oral toxicity study. However in the latter 5-week study, observed elevations in ALT returned to control levels during the 5th week of treatment. Increases in ALT were also observed sporadically in other 3-month oral studies in rats at doses 200 mg/kg. However, correlative elevations in other liver enzymes AST and ALK were not consistently observed. In addition, elevated ALT levels were not observed in 1-year studies in rats at doses up to 400 mg/kg and no evidence of histological alterations have been correlated with these biochemical changes in any of the studies mentioned. In the 3-month and 1-year studies in monkeys, animals which died also showed increased AST and ALT levels. However, histological correlates to these findings were limited to very slight hepatocellular vacuolation observed in one high dose female which was euthanized in the 1-year study. Thus collectively, the available studies in rats and monkeys provided little evidence for toxicologically significant hepatotoxic effects in either species. Reproduction: Effects of MK-0476 on fertility were studied in rats of both sexes. In males. MK-0476 at doses up to 800 mg/kg, p.o. (~4800 mg/m², approximately 650 times the proposed adult dose on mg/m² basis) produced no treatment related effects on fertility or reproductive performance. In females, oral doses of 200 mg/kg (~1200 mg/m², approximately 160 times the proposed adult dose on mg/m² basis) produced slight reductions in the fertility (15.8%) and fecundity (13.7%) indexes. The next lower dose 100 mg/kg (~600 mg/m², approximately 80 times the proposed adult and pediatric doses on mg/m² basis) had no effects on fertility or fecundity in female rats. Teratogenicity studies were carried out in rats and rabbits. In rats, oral (gavage) administration of MK-0476 (L-706,631) at doses up to 400 mg/kg/day (~2400 mg/m²; 300 times the proposed adult dose on mg/m² basis) and in rabbits, at doses up to 300 mg/kg/day (~3600 mg/m², approximately 490 times the proposed adult dose on mg/m² basis) during the period of organogenesis produced no evidence of embryo-fetal toxicity or teratogenicity. An overall increased fetal incidence of incomplete ossification of the pelvic bone along with reduced fetal weights and/or increases in fetal deaths was attributable to severe maternal toxicity (protracted fasting and/or blood in bottom of cage pan) in two dams at a dose of 300 mg/kg in rabbits. No evidence of maternal toxicity was observed at the next lower dose tested, 100 mg/kg/day (~1200 mg/m², approximately 160 times the proposed adult dose on mg/m² basis). Potential developmental effects in the F1 generation were assessed in a Segment III oral late gestation and lactation study in rats. MK-0476 at doses up to 200 mg/kg (~1200 mg/m²; 160 times the proposed adult dose on mg/m² basis) had no toxicologically significant effects on pup survival, pre-weaning growth, or F1 development. Genotoxicity: MK-0476 (L-706,631) tested negative for mutagenic/clastogenic activity in the following assay systems: Tumorigenicity: MK-0476 was administered to mice and to rats The maximum dose tested in rats was one at which maximal absorbtion was demonstrated, whereas in mice it was MTD. Both studies were acceptable (see attached CAC comments). No statistically significant or dose related increases in the incidence of any tumor type was detected in either mice or rats under the conditions : 7 Thus, MK-0476 was regarded as negative for tumorigenic activity in both the mouse and rat In mice, the NOEL of $100 \text{ mg/kg} = 300 \text{ mg/m}^2$ and is approximately 40 and 50 times the maximum proposed daily dose in adults and pediatric patients on a mg/m² basis. In rats the NOEL of 200 mg/kg = 1200 mg/m^2 and is approximately 160 and 190 times, respectively, the maximum proposed daily therapeutic dose in adults and pediatric patients on an mg/m² basis. Local tolerance: Dermal and ocular studies on the local tolerance to the montelukast sodium bulk drug showed it to be mildly irritating to the skin of rabbits. potential, whereas Draize scores indicated it to be severely irritating to the eyes of rabbits. However, the potential for irritant effects of the bulk drug are not considered to be a risk for the patient population and the formulated therapeutic product used via the intended route of administration. In additional studies reviewed herein, the local tolerance of L-706,631-002P, a process intermediate and dicyclohexylamine salt of MK-0476 was assessed. Results from these studies showed that L-706,631-002P had no dermal irritant effects in rabbits, but was classified as a mild irritant to the eyes based on the results of both the and on the basis of Draize scores from in vivo studies wherein it was administered directly to the eyes of rabbits. Special Toxicity: Evaluations of montelukast's potential for phototoxic effects, hemolyisis in vitro, induction hepatic P-450 or peroxisomal enzyme activity in mice or rats, drug interactions in mice and immunogenic effects in guinea pigs was evaluated in a series of studies. Tests for phototoxicity in mice showed that montelukast, at doses up to 500 mg/kg p.o., was not phototoxic for UVA, UVB or visible light spectra. In vitro tests for hemolytic potential using rat, dog, and human blood showed that Montelukast produced hemolysis in vitro in blood from all three species. Hemolysis in human blood was observed at MK-0476 concentrations as low as 47 µg/ml in whole blood and 13 µg/ml in washed red blood cells. However, no hemolysis was reported in i.v. studies in rats or monkeys after 2 weeks of i.v. doses up to 0.72 mg/kg in rats and up to 0.36 mg/kg. MK-0476's effects on, and/or potential to induce either P450-linked 7-ethoxy-4-trifluoromethylcoumarin 0-deethylase (EFCOD) or hepatic fatty acyl CoA-oxidase activity (FACO; a non-P450 hepatic peroxisomal enzyme) were assessed in mice and rats following 4 days of repeated oral dosing. In mice, MK-0476 (400 mg/kg/day, p.o.) inhibited P450-mediated EFCOD activity (38-55%), but had no significant effects on liver weights or FACO activity. In rats oral doses of MK-0476 (400 and 800 mg/kg; p.o.) produced no effects on liver weights, EFCOD or FACO activities. These studies showed no evidence of P450 or peroxisomal enzyme induction after 4 days of repeated dosing in rats (at doses of 400 and 800 mg/kg, p.o.) or mice (at doses of 400 mg/kg p.o.). However, specific assessments of MK-0476's potential to induce either CYP3A4 [involved the sufoxidation (M2a/b) and 21-hydroxylation (M5a/b) of MK-0476 in humans] or CYP2C9 [involved in the 36-hydroxylation (M6a/b) of MK-0476 in humans] P450 isoforms, were not conducted. Studies using immunized guinea pigs showed that intravenous challenge with MK-0476 (1 mg/animal) did not induce active systemic or passive cutaneous anaphylaxis. Drug interaction studies in mice showed that montelukast (5000 mg/kg p.o.) produced no additive or synergistic toxicological effects when given at 1 hr post doing with prednisone (500 mg/kg; 500 times the clinical dose), theophylline (30 mg/kg; 5 times the clinical dose), or salbutamol (40 mg/kg; 500 times the clinical dose). In conclusion, the pharmacology, pharmacokinetics and toxic potential of montelukast sodium has been evaluated extensively in multiple in vitro and in vivo studies. Treatment related gastrointestinal disturbances were observed in mice, rats and monkeys and potential hematopoietic toxicity was observed in monkeys following repeated in subacute and chronic toxicity testing. However, NOAELs observed in all repeat dose toxicity studies demonstrated wide margins of safety relative to the proposed therapeutic doses for all observed toxicity. MK-0476 (L-706,631) showed no potential for mutagenic/clastogenic activity Further, MK-0476 (L-706,631) showed no evidence of tumorigenic activity The potential of montelukast sodium for reproductive toxicity was characterized in rats and/or rabbits, at high multiples over the proposed clinical range. Results from these studies revealed only mild effects on fertility and fecundity in female rats, but no evidence of embryofetal toxicity, teratogenicity in either species or on pup survival, preweaning growth or F1 development in rats. The NOAELs for effects on fertility and fecundity provided wide margins of safety compared to the proposed therapeutic dose. Collectively, adequate preclinical testing and demonstration of wide safety margins for the observed toxicity, indicate no preclinical issues related to the proposed therapeutic indication. Such that from a preclinical standpoint the applicationis recommended for approval. Excipients, Degradants and Impurities: The proposed levels of all excipients, in both the adult tablet and the children's chewable tablet, occur at levels well within the ranges of those used in other currently
approved drug products. Thus, there are no nonclinical issues with the proposed excipients in either the adult or pediatric formulation. The safety of the proposed limits for degradants of the both the adult and pediatric drug products as well as that for impurities in the drug substance was qualified based on adequate exposure and margins of safety between the maximum amounts to be administered clinically and amounts administered at the NOAEL in previously conducted preclinical toxicity studies of three months or longer duration (Pharmacology review/Chemistry consult/review for safety of degradants and impurities by this reviewer dated 10/19/97). ### Labeling Review: To achieve consistency with current Divisional labeling practices, the following sections of the labeling should be revised as indicated below: Carcinogenesis, Mutagenesis, and Impairment of Fertility No evidence of tumorigenicity was seen in either a 2-year carcinogenicity study in Sprague Dawley rats, at oral (gavage) doses of up to 200 mg/kg/day (approximately 160 times the maximum recommended daily oral dose in adults and 190 times the maximum recommended daily oral dose in children on a mg/m² basis) or in a 92 week carcinogenicity studies in mice at dose up to 100 mg/kg/day (approximately 40 times the maximum recommended daily oral dose in adults and 50 times the maximum recommended daily oral dose in children on a mg/m² basis). Montelukast tested negative for mutagenic/clastogenic activity In fertility studies in female rats, montelukast produced reductions in fertility and fecundity indices at an oral dose of 200 mg/kg (approximately 160 times the maximum recommended daily oral dose in adults on a mg/m² basis). No effects on female fertility or fecundity were observed at 100 mg/kg (approximately 80 times the maximum recommended daily oral dose in adults on a mg/m² basis). Montelukast had no effects on fertility in male rats at oral doses up to 800 mg/kg (approximately 80 times the maximum recommended daily oral dose in adults on a mg/m² basis) ### Pregnancy Pregnancy Category B: No teratogenicity was observed in rats at oral doses up to 400 mg/kg/day (approximately 320 times the maximum recommended daily oral dose in adults on a mg/m² basis) and in rabbits at oral doses up to 300 mg/kg/day (approximately 490 times the maximum recommended daily oral dose in adults on a mg/m² basis). Montelukast crosses the placenta in rats and rabbits. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed. ### Nursing Mothers Studies in rats have shown that montelukast is excreted in milk. It is not known if SINGULAIR is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when SINGULAIR is given to a nursing mother. ### **OVERDOSAGE** No mortality occurred following single oral doses up to 5000 mg/kg in mice (approximately 2000 times the maximum recommended daily oral dose in adults and 2400 times the maximum recommended daily oral dose in children, on a mg/m² basis) and rats (approximately 4100 times the maximum recommended daily oral dose in adults and 4800 times the maximum recommended daily oral dose in children, on a mg/m² basis). Mortality occurred at an i.v. dose of 156 mg/kg in rats (approximately 130 times the maximum recommended daily oral dose in adults and 150 times the maximum recommended daily oral dose in children, on a mg/m² basis) and at an i.v. dose of 312 mg/kg in mice (approximately 130 times the maximum recommended daily oral dose in adults and 150 times the maximum recommended daily oral dose in children, on a mg/m² basis). No specific information is available on the treatment of overdosage with SINGULAIR. In chronic asthma studies, SINGULAIR has been administered at doses up to 200 mg/day to patients for 22 weeks and in short-term studies, up to 900 mg/day to patients for approximately a week without clinically important adverse experiences. It is not known whether montelukast is dialyzable by peritoneal- or hemodialysis. Note: Calculations of mg/m² doses used for comparison to clinical doses in the preclinical sections of the labeling are provided in table 8 (Succeeding page). APPEARS THIS WAY ON ORIGINAL Table 8. Calculations for labeling revisions. Drug: Singulair 10 mg tablets and 5 mg chewable tablets | | | - | # daily | / | | | | | |------------------|----------------|-----------|---------|-----------|-------------|----------|-----------|------------| | | age | mg/dose | doses | mg/day | <u>/</u> kg | mg/kg | factor | mg/m² | | Pediatric | 6 | 5 | 1 | 5 | | | | 6.25 | | Adult | >12 | 10 | 1 | 10 | 50 | | | 7.40 | | | | | conv. | | Dose | Ratio | Rounded D | | | <u> </u> | route | mg/kg/d | factor | mg/m² | 1 | Children | Adults | Children | | Carcino | genicity: | | | - <u></u> | | | Addits | Crinaren | | mouse | p.o. | 100 | 3 | 300 | 40.54 | 48.00 | 40 | 50 | | rat | p.o. | 200 | 6 | 1200 | 162.16 | 192.00 | 160 | 190 | | | iction and Fer | tility: | - | | | .02.00 | 100 | 190 | | rat | po ♂ Noel | 800 | 6 | 4800 | 648.65 | N/A | 650 | N/A | | rat | p.o. ♀ | 200 | 6 | 1200 | 162.16 | N/A | 160 | N/A | | rat | p.o. ♀ Noel | 100 | 6 | 600 | 81.08 | N/A | 80 | N/A | | Teratoge | | | | j | • | | 00 | IN/A | | rat | p.o. ♀ Noel | 400 | 6 | 2400 | 324.32 | N/A | 320 | N/A | | rabbit | p.o. 약 Noel | 300 | 12 | 3600 | 486.49 | N/A | 490 | N/A | | rabbit | p.o mat tox | 300 | 12 | 3600 | 486.49 | N/A | -490 | N/A
N/A | | rat | p.o Seg.ili | 200 | 6 | 1200 | 162.16 | N/A | 160 | | | <u>Overdos</u> a | age: | | | | | 1777 | 100 | N/A | | mouse | p.o. | 5000 | 3 | 15000 | 2027.03 | 2400.00 | 2000 | 2400 | | mouse | lethal I.v | 312 | 3 | 936 | 126.49 | 149.76 | 130 | 150 | | mouse | non lethal iv | 156 | 3 | 468 | 63.24 | 74.88 | 65 | | | rat | p.o. | 5000 | 6 | 30000 | 4054.05 | 4800.00 | 4100 | 75
4800 | | rat | lethal I.v | 156 | 6 | 936 | 126.49 | 149.76 | 130 | 4800 | | at | non lethal iv | 78 | 6 | 468 | 63.24 | 74.88 | 65 | 150 | | <u> Other:</u> | (Describe stu | idies her | e) | | | 74.00 | 05 | 75 | | nonkey | 1-year p.o. | 150 | 12 | 1800 | 243.24 | 288.00 | 240 | 200 | | at | 1-year p.o. | 50 | 6 | 300 | 40.54 | 48.00 | 40 | 290 | | nonkeÿ | 14-wk infant | 50 | 12 | 600 | 81.08 | 96.00 | 80 | 50
05 | | | | | | | | 50.00 | OU | 95 | ### RECOMMENDATION The NDAs: for SINGULAIR are approvable from a preclinical standpoint, with incorporation of the suggested revisions for the labeling sections entitled: Carcinogenesis. Mutagenesis. and Impairment of Fertility, Pregnancy Category, Nursing Mothers, and OVERDOSAGE as indicated above. 181 12/1/97 Shannon Williams, Ph.D., Pharmacologist c.c. Original NDA 20-829 and 20-830 HFD-570/Division File HFD-570/C.J. Sun HFD-570/A. Trontell HFD-570/C.S.O. HFD-570/Shannon Williams HFD-570/M. Himmel Dee. 1, 1997 Attachments: Relevant pharmacology reviews of INDs tablet, chewable tablet and i.v. solution as follows: - IND L706,631, 13 JUL 92, Y.S. Choi, Ph.D. - IND L706,631, 24 OCT 96, S. P. Williams Ph.D. TND L706,631, 02 JUN 97, S. P. Williams Ph.D. IND (i.v. infusion)L706,631, 27 JUL 95, Y.S. Choi, Ph.D. Executive CAC Report, June 11,1997 # **DIVISION OF PULMONARY DRUG PRODUCTS** REVIEW OF-PHARMACOLOGY AND TOXICOLOGY DATA Chemistry Consult/ Review for Safety of Impurities NDA: 20-829 and 20830 Submissions for NDA 20-829 and NDA 20830 covered in this review: | NDA 20-829 Si | ngulair®Tablets | NDA 20-830 Singulair® Chewable Tablets | | | |-----------------|-----------------|--|---------------|--| | Submission Date | Date received | Submission Date | Date received | | | 30 JUL 97 (BC) | 31 JUL 97 | 31 JUL 97 (BC) | 01 AUG 97 | | | 16 OCT 97 (BP) | 17 OCT 97 | 16 OCT 97 (BP) | 17 OCT 97 | | | 29 OCT 97 (BP) | 30 OCT 97 | 29 OCT 97 (BP) | 30 OCT 97 | | Information to be conveyed to the Sponsor: Yes() No (X) Reviewer: Shannon Williams, Ph.D. Date of Consult Request: 26 SEP 97 Date of Consult Review: 31 OCT 97 Sponsor: Merck & Co., Inc., West Point, PA Drug Name: Oral MK-0476 (Oral L-706,631) Related INDs/NDAs/DMFs: Class: Leukotriene D₄/E₄ receptor antagonist Indication: Chronic Asthma Clinical Formulation: 10 mg tablet for adults and 5 mg chewable tablet for children 6 years of age #### Review Dr. John Leak (reviewing Chemist for montelukast) has currently requested that the safety of the proposed levels of degradants in the final drug products and the proposed levels of impurities in the drug substance be evaluated. Table 1 (succeeding page) presents a tabulated summary of the proposed limits for degredation products in the drug products and impurities in the drug substance as well as the threshold limits for each requiring qualification. Table 1. Proposed Limits for Degredation Products in the Drug Products (10 mg adult tablet and 5 mg pediatric chewable tablet) and Impurities in the Drug Substance which safety evaluation was requested. # Degradation Products in the Drug Product: The guideline published in the Federal Register (Vol. 62, 5/19/97, p 27454) on impurities in new drug products, indicate that degradation products which occur at levels > 1.0% for maximum daily doses of <10 mg and > 0.5% for maximum daily doses of 10 to 100 mg require qualification. The safety of the proposed limits for degradation products in the drug products are evaluated below, according to this guideline. The levels of the . at the proposed limits of the thresholds which require qualification of degradation products (0.5% for the 10 mg tablet and 1.0% for the 5 mg/kg tablet. The maximum limits proposed for the degradation product were for the 10 mg tablet (NDA 20829) and for the 5 mg chewable tablet (NDA 20830). These represent a total daily intake of the for the 10 mg tablet of 0.002 mg/kg for a 50 kg adult and a total daily intake of 0.005 mg/kg for the
5 mg chewable tablet in a 20 kg child. In a 3 month oral toxicity study in rats (Report No.TT#92-610-0) three lots (M013, M014, and M015) were used which contained 0.12, 0.07, and 0.12% of the degradation product. The NOAEL for the study was 400 mg/kg, and Batch No. M014 which contained the least amount of F1 (0.07%) was used for qualification of the F1 degradation product. ### Calculation: NOAEL x % degradation product = total daily amount administered at the NOAEL 400 mg/kg x 0.0007 =0.28 mg/kg total daily amount of administered. The total daily intake in adults (0.002 mg/kg) and children (0.005mg/kg) are 140 and 56 times less than that given to rats at the NOAEL in the 3-month toxicity study and are well above the safety margin of 10 needed for qualification. ### Impurities in the Drug Substance: The guidelines published in ICH topic Q3A, Impurities in New Drug Substances, indicate that impurities in the drug substance which occur at levels < 0.1% for maximum daily doses of ≤ 2 g/day require qualification. The safety of the proposed limits for impurities in the drug substance are evaluated below, according to this guideline. The proposed maximum limit for the impurity in the drug substance was . This limit represents a total daily intake of 0.0006 mg/kg for a 50 kg adult taking the 10 mg tablet and a total daily intake of 0.00075 mg/kg for a 20 kg child taking the 5 mg chewable tablet. In a 14-week oral toxicity study in mice (Report No.TT#93-001-0) 1 lot (M021) was used which contained impurity. The NOAEL for the study was 50 mg/kg. ### Calculation: NOAEL x % degradation product = total daily amount administered at the NOAEL 50 mg/kg x 0.0026 = 0.13 mg/kg total daily amount of administered. The total daily intake in adults (0.0006 mg/kg)and children (0.00075 mg/kg) is 217 and 173 times less than that given to mice at the NOAEL in the 14-week oral toxicity study, respectively, and are well above the safety margin of 10 needed for qualification. The maximum limits proposed for the degradation product in the drug substance was These represent a total daily intake of the for the 10 mg tablet of 0.0004 mg/kg for a 50 kg adult and a total daily intake of 0.0005 mg/kg for the 5 mg chewable tablet in a 20 kg child. In a 3 month oral toxicity study in rats (Report No.TT#92-610-0) three lots (M013, M014, and M015) were used which contained 0.12, 0.07, and 0.12% of the degradation product. The NOAEL for the study was 400 mg/kg, and Batch No. M014 which contained the least amount of F1 (0.07%) was used for qualification of the F1 degradation product. ### Calculation: NOAEL x % degradation product = total daily amount administered at the NOAEL 400 mg/kg x 0.0007 = 0.28 mg/kg total daily amount of administered. The total daily intake in adults (0.0004mg/kg) and children (0.0005mg/kg) are 700 and 560 times less than that given to rats at the NOAEL in the 3-month toxicity study, respectively, and are well above the safety margin of 10 needed for qualification. The maximum limit proposed for the impurity in the drug substance was This limit represents a total daily intake of for the 10 mg tablet of 0.0004 mg/kg for a 50 kg adult and a total daily intake of 0.0005 mg/kg for the 5 mg chewable tablet in a 20 kg child. In a three month oral toxicity study in infant monkeys (Report No.TT#94-9003) 1 lot (M027) was used which contained 0.06% of the impurity. The NOAEL for the study was 50 mg/kg. #### Calculation: NOAEL x % degradation product = total daily amount administered at the NOAEL 50 mg/kg x 0.0006 = 0.03 mg/kg total daily amount of administered. The total daily intake in adults (0.0004 mg/kg) and children (0.0005 mg/kg) is 75 and 60 times less than that given to infant monkeys at the NOAEL in the 3-month toxicity study, respectively, and are well above the safety margin of 5 needed for qualification. - The maximum limit proposed for the impurity in the drug substance was ... This limit represents a total daily intake of for the 10 mg tablet of 0.0004 mg/kg for a 50 kg adult and a total daily intake of 0.0005 mg/kg for the 5 mg chewable tablet in a 20 kg child. In a 1 year oral toxicity studies in rats (Report No.TT#92-651-0) 5 lots (M0019, M020, M021, M023, and M024) were used which contained from 0.06% to 0.18% of the impurity, except for batch No. M021, in which the impurity was not quantified. Information regarding the duration of use for batch No. M021 in the 1 year toxicity study in rats was requested from the Sponsor via a telecommunication on Friday October 3, 1997. Additional information provided by the Sponsor (Submission dated 10/29/97) indicated that batch No 21 was used continuously for the period of week 14 day 5 through week 25 day 3 of treatment. Thus, continuous use of the other batches which contained a minimum of 0.06% of the for a duration ≥ 3 months was assured. The NOAEL for the rat study was 50 mg/kg, and the minimum amount of the 0.06%, was used for qualification. #### Calculation: NOAEL x % degradation product = total daily amount administered at the NOAEL 50 mg/kg x 0.0006 = 0.03 mg/kg total daily amount of administered. Thus the total daily amount of the impurity at the NOAEL (given to rats for periods ≥ 3months) in the 1-year toxicity study is 75 times greater than the maximum daily intake (0.0004 mg/kg) in adults and 60 times greater than the maximum daily intake (0.0005 mg/kg) in a 20 kg child. This difference is well above the safety margin of 10 needed for qualification. The level of the at the proposed limits of do not exceed the threshold for requiring qualification of impurities in the drug substance (0.1%). - The maximum limit proposed for the impurity in the drug substance was . This limit represents a total daily intake of of 0.0004 mg/kg for the 10 mg tablet in a 50 kg adult and 0.0005 mg/kg for the 5 mg chewable tablet in a 20 kg child. In a 1-year oral toxicity studies in rats (Report No.TT#92-651-0) 5 lots (M0019, M020, M021, M023, and M024) were used, which contained from 0.09% to 0.23% of the impurity. The NOAEL for the study was 50 mg/kg, and the minimum amount of the impurity, 0.09%, was used for qualification. #### Calculation: NOAEL x % degradation product = total daily amount administered at the NOAEL 50 mg/kg x 0.0009 = 0.045 mg/kg total daily amount of administered. Thus, the minimum total daily amount of the , at the NOAEL in the 1-year toxicity study in rats (0.045 mg/kg) is 113 times greater than the maximum daily intake (0.0004mg/kg) in adults and 90 times greater than the maximum daily intake (0.0005 mg/kg) in children. This difference is well above the safety margin of 10 needed for qualification. ### SUMMARY AND EVALUATION: Review of proposed limits for the two degradation products identified in the drug substance indicated that: 1) the proposed limits for the the threshold level which would require qualification and 2) adequate exposure and margins of safety for the degradation product (beyond that needed for qualification) were demonstrated in a 3 month oral toxicity study in rats (Report No.TT#92-610-0). Other impurities in the drug substance whose proposed limits required qualification included: Qualification of these impurities was demonstrated through adequate exposure and margins in toxicity studies of 3 months or greater duration as follows: for a 14-week oral toxicity study in mice (Report No.TT#93-001-0); for a 3 month oral toxicity study in rats (Report No.TT#92-610-0); for a three month oral toxicity study in infant monkeys (Report No.TT#94-9003); and the all were qualified using a 1-year oral toxicity study in rats (Report No.TT#92-651-0). The proposed limits for the impurity did not exceed the threshold limit for qualification of impurities in the new drug substance and thus did not require qualification. NDA 20-829 and 20-830/chemistry consult Page 6 In conclusion, the safety of the proposed limits for degradants of the both singuilar drug products as well as those for impurities in the drug substance which required qualification, was demonstrated based on adequate exposure and margins of safety between the maximum amounts to be administered clinically and amounts asministered at the NOAEL in previously conducted preclinical toxicity studies of three months or longer duration. ### **RECOMMENDATION:** The safety of proposed limits for degradants and impurities in the drug products and drug substances for Singulair was demonstrated by adequate exposures achieved in previous nonclinical toxicity studies of 3 months duration or longer. Thus the proposed specifications are acceptable form a preclinical standpoint /\$/ Shannon P. Williams, Ph.D. Pharmacologist C.C. Original NDA 20-829 and 20-830 HFD-570/Division File/NDA HFD-570/C.J. Sun HFD-570/M.O./Trontell HFD-570/C.S.O./B. Kuzmik HFD-570/S.P. Williams HFD-570/C.M.C./J. Leak Oct 31, 1997 APPEARS THIS WAY ON ORIGINAL